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In this lecture, we continue exploring how to design digital hardware using 
SystemVerilog.  The components we cover will be used in Lab 2 and Lab 3 
following this lecture.
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Here are a list of learning outcome for this lecture.  It is also tightly 
coupled with Lab 2, which will take you through the steps in designing 
with ROM, RAM and counter, to produce a variable frequency 
sinewave generator.
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Learning outcomes

v How to convert from binary to BCD format?
v How the generate various clock signals with different 

periods?

v How to specify shift registers?
v How to design a Linear Feedback Shift Register (LFSR) 

that produces pseudo-random binary sequence (PRBS)?
v How to specify ROM and RAM components?

v What is in Lab 2?
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We now take another example of a relative complex combinational circuit, 
and see how we can specify our design in SystemVerilog.
The goal is to design a circuit that converts an 8-bit binary number into three 
x 4-bit binary coded decimal values (i.e. 12 bit).  
There is a well-known algorithm called “shift-and-add-3” algorithm to do this 
conversion.   For example, if we take 8-bit hexadecimal number 8’hff (i.e. all 
1’s), it has two hex digits.  Once converted to binary coded decimal (BCD) it 
becomes 255 (3 BCD digits).
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Displaying a binary number as decimal

! In Lab 1 Task 4, you are required to display the counter value as binary coded 
decimal number instead of hexadecimal.  A SystemVerilog component bin2bcd.sv 
is provide.

! Hex numbers are difficult to interpret. Often we would like to see the binary value 
displayed as decimal.  For that we need to design a combinational circuit to 
converter from binary to binary-coded decimal.  For example, the value 8’hff or 
8’b11111111 is converted to 8’d255 in decimal.
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Before we examine this algorithm in detail, let us consider the arithmetic 
operation of shifting left by one bit.  This is the same as a  x 2 operation.  
If we do it 8 times, then we have multiplied the original number by 256 or 28.
Now if you ignore the bottom 8-bit through a truncation process, you 
effectively divide the number by 256.  In other words, we get back to the 
original number in binary (or in hexadecimal).
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Shift and Add 3 algorithm [1] – shifting operation
! Let us consider converting hexadecimal number 8’h7C (which is decimal 8’d124)
! Shift the 8-bit binary number left by 1 bit = multiply number by 2
! Shifting the number left 8 times = multiply number by 28

! Now truncate the number by dropping the bottom 8 bits = divide number by 28

! So far we have done nothing to the number – it has the same value
! The idea is that, as we shift the number left into the BCD digit “bins”, we make the 

necessary adjustment to the hex number so that it conforms to the BCD rule (i.e. falls 
within 0 to 9, instead of 0 to 15)
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Our conversion algorithms works by shift the number left 8 times, but each 
time make an adjustment (or correction) if it is NOT a valid BCD digit.
Let us consider this example.  We can shift the number four time left, and it 
will give a valid BCD digit of 7.
However, if we shift left again, then 7 becomes hex F, which is NOT valid.  
Therefore the algorithm demands that 3 is added to 7 (7 is larger or equal to 
5) before we do the shift.  
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Shift and Add 3 algorithm [2] – shift left with problem
! If we take the original 8-bit binary number and shift this three times into the BCD 

digit positions.  After 3 shifts we are still OK, because the ones digit has a value of 
3 (which is OK as a BCD digit).

! If we shift again (4th time), the digit now has a value of 7. This is still OK. However, 
no matter what the next bit it, another shift will make this digit illegal (either as 
hexadecimal “e” or “f”, both not BCD).

! In our case, this will be a “f”!
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The rationale of this algorithm is the following. If the number is 5 or larger, 
after shift left, we will get 10 or larger, which cannot fit into a BCD digit.  
Therefore if the number 5 (or larger) we add 3 to it (after shifting is adding 6), 
which measure we carry forward a 1 to the next BCD digit.
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Shift and Add 3 algorithm [3] – shift and adjust

! So on the fourth shift, we detect that the value is > or = 5, then we adjust this 
number by adding 3 before the next shift.  

! In that way, after the shift, we move a 1 into the tens BCD digit as shown here.
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To recap:  the basic idea is to shift the binary number left, one bit at a time, 
into locations reserved for the BCD results.  Let us take the example of the 
binary number 8’h7C.  This is being shifted into a 12-bit/3 digital BCD result 
as shown above.  
After 8 shift operations, the three BCD digits contain respectively: hundredth 
digit = 4’b0001, tens digit = 4’b0010 and ones digit = 4’b0100, thus 
representing the BCD value of 124.
The key idea behind the algorithm can be understood as follow (see the 
diagram in the slide):

1. Each time the number is shifted left, it is multiplied by 2 as it is shifted to 
the BCD locations;

2. The values in the BCD digits are the same as as binary if its value is 9 or 
lower.  However if it is 10 or above, the number is wrong for BCD. Instead, 
it should carry over to the next digit.  A correction must be made by 
adding 6 to this digit value.

3. The easiest way to do this is to detect if the value in the BCD digit 
locations are 5 or above BEFORE the shift (i.e. X2).  If it is ≥5, then add 3 to 
the value (i.e. adjust by +6 after the shift). 
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Shift and Add 3 algorithm [4] – full conversion

! In summary, the basic idea is to shift the binary number left, one bit at a time, into 
locations reserved for the BCD results. 

! Let us take the example of the binary number 8’h7C.  This is being shifted into a 
12-bit/3 digital BCD result of 12’d124 as shown below. 
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Here is the SystemVerilog implementation of the binary to BCD algorithm.  
You are invited to examine how the algorithm described in previous slides are 
implemented in this behavioural description in SV.

Note that although this description looks like a software function, synthesis 
program will produce hardware implementation of it, say, in FPGA.
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SystemVerilog implementation - bin2bcd.sv
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Counters are good in counting events (e.g. clock cycles).  We can also use 
counters to provide some form of time measurement.
Here is a useful component called a “clock tick” circuit.  We are not interested 
in the actual count value.  What is needed, however, is that the circuit 
generates a single clock pulse (i.e. lasting for one clock period) for every N+1 
rising edge of the clock input signal clk.  
We also add an enable signal en, which must be set to ‘1’ in order to enable 
the internal counting circuit.
Shown here is the module interface for this circuit in SystemVerilog.
Note that the parameter keyword is used to define the number of bits of the 
internal counter (or the count value N).  This makes the module easily 
adaptable to different size of counter.
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A Flexible Timer – clktick.sv

! Instead of having a counter that count 
events, we often want a counter to provide 
a measure of time. We call this a timer.

! Here is a useful timer component that 
uses a clock reference, and produces a 
pulse lasting for  one cycle every N+1 
clock cycles.  

! If “en” signal is low (not enabled), the clk
pulses are ignored.

clktick

clk

en
N

16

tickrst

clk

count N      N-1    N-2    - - - -     1        0    

tick
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The actual SystemVerilog specification for this module is shown here.  
There has to be an internal counter count  whose output is NOT visible 
external to this module.  This is created  with the reg [N_BIT-1:0] count; 
statement.
The output tick has to be declared as reg because its value is updated inside 
the always block.
Also note that instead of adding ‘1’ on each positive edge of the clock, this 
design uses a down counter.  The counter counts from N to 0 (hence N+1 
clock cycles). When that happens, it is reset to N and the tick output is high 
for the next clock cycle.
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clktick.sv explained

! “count” is an internal counter with WIDTH bits 
! We use this as a down (instead of up) counter 
! The counter value goes from N to 0, hence 

there are N+1 clock cycles for each tick pulse

clk

count N      N-1    N-2    - - - -     1        0    

tick
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Using this style to design a clock tick circuit allows us to easily connect 
multiple counters in series as shown here.
The clktick module is producing a pulse on the tick output every 50,000 
cycles of a 50MHz clock.  Therefore tick goes high for 20 nanosecond once 
every 1 msec (or 1KHz).  
The clktick module is sometimes called a prescaler circuit.  It prescale the 
input clock signal (50MHz) in order for the second counter to count at a 
lower frequency (i.e. 1KHz).
The second counter is now counting the number of millisecond that has 
elapsed since the last time reset signal (1R) goes high.
The design of this circuit is left as a Laboratory task for you to do.

In case you are not familiar with the schematic notation here (which is a IEEE 
standard), C1/- indicates that the clock input is synchronized to the enable 
and reset input (1EN and 1R), and it results in circuit counting DOWN (‘-’ 
sign).

Lecture 4 Slide 11PYKC  22 Oct 2024 EIE2 Instruction Architectures & Compilers

Cascading counters

! By connecting clktick module in series with a counter module, we can produce a 
counter that counts the number of millisecond elapsed as shown below.

50MHz

tick

1ms
CT cnt cnt + 1 cnt + 2

clktick

50MHz

1EN

16’d49999
16

tick

counter
16

Elapsed time (in ms)1’b1 1EN cnt

1R
reset

C1/- C1/+
1R
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Here is yet another useful form of a counter.  I call this a clock divider.  Unlike 
the clktick module, which produces a one cycle tick signal every N+1 cycle of 
the clock, this produces a symmetric clock output clkout at a frequency 
which is the input clock frequency divided by 2*(K+1).  
Shown here is the module interface in SystemVerilog.  Again we have used 
the parameter statement to make this design ease of modification for 
different internal counter size.
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Clock divider (clkdiv.sv)

! Another useful module is a clock divider circuit.
! This produces a symmetrical clock output, 

dividing the input clock frequency by a factor of 
2*(K+1).

clkdiv

clkin

1EN

K
16

clkouten

clkin

count K      K-1    K-2    - - - -     1        0       K    

clkout

C1/-
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The Verilog specification is similar to that for clktick.  This also has an internal 
counter that counts from K to 0, then the output clkout is toggled whenever the count 
value reaches 0.
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clkdiv.v explained

clkdiv

clkin

1EN

K
16

clkouten

C1/-

clkin

count K      K-1    K-2    - - - -     1        0       K    

clkout



14

To specify a shift register in SystemVerilog, use the code shown here.  We use 
the  <= assignment to make sure that sreg[4:1] are updated only at the end 
of the always block.
On the right is a short-hand version of the four assignment statements:
 sreg <= {sreg[3:1], data_in}

This way of specifying the right-hand side of the assignment is powerful.  We 
use the concatenation operation { …. } to make up four bits from sreg[3:1] 
and data_in (with data_in being the LSB) and assign it to sreg[4:1]. 
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Shift Register specification in SystemVerilog

data_out

sreg[4]
sreg[3]

1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
data_in

clk

sreg[2]sreg[1]

sreg[1]
sreg[2]
sreg[3]
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We can also make a shift register count in binary, but in an interesting sequence.

Consider the above circuit with an initial state of the shift register set to 4’b0001.
The sequence that this circuit goes through is shown in the table here. It is NOT 
counting binary.  Instead it is counting in a sequence that is sort of random.  This is 
often called a pseudo random binary sequence (PRBS).

The shift register connect this way is also known as a “Linear Feedback Shift 
Register” or LFSR.  There is a whole area of mathematics devoted to this type of 
computation, known as “finite fields” which we will not consider on this course.
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Linear Feedback Shift Register (LFSR) (1)

Q1
1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
clk

Q2 Q3 Q4

XOR

u Assuming that the initial value is 4’b0001.
u This shift register counts through the sequence as 

shown in the table here.
u This is now acting as a 4-bit counter, whose count 

value appears somewhat random.
u This type of shift register circuit is called “Linear 

Feedback Shift Register” or LFSR.
u Its value is sort of random, but repeat very 2N-1 

cycles (where N = no of bits).
u The “taps” from the shift register feeding the XOR 

gate(s) is defined by a polynomial as shown 
above.
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The circuit shown below is effective implementing a sequence defined by a polynomial 
shown: 1 + X3 + X4.  The term “1” specifies the input to the left-most D-FF.  This signal is 
derived as an XOR function (which is the finite field ‘+’) of two signals “tapped” from stage 
3 (i.e. X3) and stage 4 (i.e. X4) of the shift register.

For example, for order 4, the table shows an alternative primitive polynomial:

1+𝑋 +𝑋!

This will produce a pseudo-random sequence which is also maximal length different 
from that using the polynomial in the slide (1+𝑋"+𝑋!).
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Primitive Polynomial

u This circuit implements the LFSR based on this primitive polynomial:
u The polynomial is of order 4 (highest power of x)
u This produces a pseudo random binary sequence (PRBS) of length  24 - 1 = 15
u Here is a table showing primitive polynomials at different sizes (or orders)

Primitive polynomial:   1 + X3 + X4
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Here is the implementation of a 4-bit LFSR of the primitive polynomial

1 +𝑋" +𝑋!

This is essentially a shift register with data_in feed from an XOR gate with Q3 
and Q4.  Note that we MUST initialize the shift register to a value other than 
4’b0000 (e.g. 4’b0001 will do).
This module has not been parameterized because for different WIDTH, we 
need different primitive polynomial!
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lfsr4.sv

Q1
1D

C1/è

1D

C1/è

1D

C1/è

1D

C1/è
clk

Q2 Q3 Q4

XOR

Primitive polynomial:   1 + X3 + X4
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This is a simplified internal circuit of a 4 words x 4 bits Read-Only Memory 
(ROM) component.
It consists of a 2-D array of transistors, which turns ON when their gate 
terminals are asserted (high).  A ‘0’ is stored if a transistor is present.  A ‘1’ is 
stored if the transistor is omitted.
The two bit address is decoded by the 2:4 decoder into one-hot code, 1110, 
1101, 1011 or 0111, which brings one of the four WORD lines high. 
 Wherever a transistor is present, the vertical BIT line is pull down to zero, 
otherwise the the BIT line is low. 
For example, if A1:A0 is 2’b10, then the third word line is high.  The output 
will be D[3:0] = 4’b0011.
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Simplified 4 x 4 ROM array

bit lines

word lines

With transistor = ‘0’
No transistor = ‘1’
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This slide shows a typical organisation inside a RAM chip.  Memory cells are 
usually organised in the form of a  2-D array of RAM cells. In this case, the 
address is 3 bits, therefore there are 8 words in this memory.  Only ONE 
ROW will be enable at any one time (hence one-hot).  

Similar to the last slide, each bit is a memory cell.  In this case, each cell is 
more complex than a single transistor.  Instead, a static memory cell is 
usually a simple cross-coupled inverter with read/write transistors – normally 
6 transistor cell.  There are now two bit lines per cell (Q and Qbar).

The output buffer is called a sense amplifier.  It sense the DIFFERENCE 
between the two complementary bit lines.  Detail of a SRAM cell design is 
outside the scope of this module.
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Simplified 8 x 6  Static RAM array
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For this module, we will not worry about the physical implementation of a 
ROM or RAM component. Instead, we will specify them behaviourally.  This 
allows digital system to be modelled, simulated and verified.   While 
counters, shift registers and other circuits are synthesized to produce 
transistors and gates, memories are mapped to pre-designed blocks. For 
example, memory in FPGAs are usually explicitly instantiated as embedded 
RAM.  This is because synthesized memory cells are synthesized into D-FF, 
and are large and expensive in resources.

Shown here is a 256 x 8 bit ROM model in SystemVerilog. This is specified as 
a synchronous ROM.  The ROM output data only appears on dout on positive 
edge of clk.  Here we also omit the output enable (OE) control signal.
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System Verilog specification of 256 x 8 ROM

addr[7:0] dout[7:0]

clk

rom
256 x 8

Verilator gives a warning unless you add an extra line!!!!!
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ROM needs to “programmed” or configured with original contents.  In 
SystemVerilog, the $readmemh(.) function allows the ROM to be loaded with 
the contents stored in a file with numbers stored as hexadecimal code as 
shown in the slide.

How is the text file sinerom.mem generated?  For Lab 2, Task 1, this file 
contains 256 samples of a single cycle cosine values with a number ranging 
from 8’h00 to 8’hFF.

Sinerom.mem is generated with a simple Python script shown here.  You 
don’t need to know Python. You could use any tools to produce this file, e.g. 
C++ or Matlab.
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Initialization of the ROM

sinegen.py sinerom.mem

addr[7:0] dout[7:0]

clk

rom
256 x 8
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A simple sinewave generator can be designed with combining counter.sv and 
rom.sv.  The counter produces the address of the ROM, and the output is the 
sine (or cosine) values.  The frequency of the output sinewave is determined 
by incr[7:0].  If incr = 1, then the sinewave period is 256 x clock period.  In 
general, the output sinewave frequency is:

𝑓#$% = 𝑓&'( ∗ 𝑖𝑛𝑐𝑟/256

Note how this top-level module sinegen.sv instantiate the two components: 
counter and rom.
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Simple Sinewave Generator

address[7:0] dout[7:0]

rom

count[7:0]

incr[7:0]

clk

counter

rst

en

Instantiate counter module called addrCounter

Internal signal name

external signal name
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Note that rom.sv is defined with two parameters: ADDRESS_WIDTH and 
DATA_WIDTH.  These are given default values.  However, if you need a ROM 
that is 1024 x 9 bit instead of 256 x 8 bit, you can simple specifiy these 
parameter as shown here when instantiating the ROM component.  The 
order of the parameters is important!

Lecture 4 Slide 23PYKC  22 Oct 2024 EIE2 Instruction Architectures & Compilers

Parameterised ROM:  

addr[9:0] dout[8:0]

clk

rom
1024 x 9
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In designing on-chip memory for microprocessors, we often need to perform 
more than one access operations simultenously to the same memory.  Here 
is a specification for a dual-port ROM.  The actual SystemVerilog code is very 
simple and obvious.  Now a user can read from two separate memory 
location at the same time.
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Dual-port ROM

addr1[7:0]

dout1[7:0]

clk

rom2ports
256 x 8

addr2[7:0]

dout1[7:0]
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Here is the design of a dual-port RAM. We need more control signals: the 
specify whether we are reading or writing to the RAM.
Such a component is extremely important in any digital system design 
because we often need to perform both read and write operations at the 
same time.

What if the read and write addresses are identical?  For example,  if memory 
location 8’hA2 of the RAM stores a value 8’h33, and you want to write a new 
value 8’h44 to the same address location, what do you think the value of 
dout is? Why?
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Dual-port RAM

wr_addr[7:0]

din[7:0]

clk

ram2ports
256 x 8

rd_addr [7:0]

dout[7:0]

wr_en rd_en


